منابع مشابه
Eigenvectors of Order-preserving Linear Operators
Suppose that K is a closed, total cone in a real Banach space X, that A :X!X is a bounded linear operator which maps K into itself, and that A« denotes the Banach space adjoint of A. Assume that r, the spectral radius of A, is positive, and that there exist x ! 1 0 and m& 1 with Am(x ! ) ̄ rmx ! (or, more generally, that there exist x ! a (®K ) and m& 1 with Am(x ! )& rmx ! ). If, in addition, A...
متن کاملLipschitz Functions of Perturbed Operators
We prove that if f is a Lipschitz function on R, A and B are self-adjoint operators such that rank(A − B) = 1, then f(A) − f(B) belongs to the weak space S1,∞, i.e., sj(A − B) ≤ const(1 + j). We deduce from this result that if A − B belongs to the trace class S1 and f is Lipschitz, then f(A) − f(B) ∈ SΩ, i.e., Pn j=0 sj(f(A) − f(B)) ≤ const log(2 + n). We also obtain more general results about ...
متن کاملOn Eigenvectors of Nilpotent Lie Algebras of Linear Operators
We give a condition ensuring that the operators in a nilpotent Lie algebra of linear operators on a finite dimensional vector space have a common eigenvector. Introduction Throughout this paper V is a vector space of positive dimension over a field f and g is a nilpotent Lie algebra over f of linear operators on V . An element u ∈ V is an eigenvector for S ⊂ g if u is an eigenvector for every o...
متن کاملFunctions of Perturbed Noncommuting Self-adjoint Operators
Abstract. We consider functions f(A,B) of noncommuting self-adjoint operators A and B that can be defined in terms of double operator integrals. We prove that if f belongs to the Besov class B ∞,1 (R), then we have the following Lipschitz type estimate in the trace norm: ‖f(A1, B1)− f(A2, B2)‖S1 ≤ const(‖A1 −A2‖S1 + ‖B1 −B2‖S1). However, the condition f ∈ B ∞,1 (R) does not imply the Lipschitz ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1999
ISSN: 0022-247X
DOI: 10.1006/jmaa.1999.6318